数据库-缓存模型

问题引入

随着互联网的普及,内容信息越来越复杂,用户数和访问量越来越大,我们的应用需要支撑更多的并发量,同时我们的应用服务器和数据库服务器所做的计算也越来越多。但是往往我们的应用服务器资源是有限的,且技术变革是缓慢的,数据库每秒能接受的请求次数也是有限的(或者文件的读写也是有限的),如何能够有效利用有限的资源来提供尽可能大的吞吐量?一个有效的办法就是引入缓存,打破标准流程,每个环节中请求可以从缓存中直接获取目标数据并返回,从而减少计算量,有效提升响应速度,让有限的资源服务更多的用户。

如下为简单的数据库-缓存模型:

简单来说就是:

  1. 如果用户请求的数据在缓存中就直接返回。
  2. 缓存中不存在的话就看数据库中是否存在。
  3. 数据库中存在的话就更新缓存中的数据。
  4. 数据库中不存在的话就返回空数据。

性能指标

  • 命中率

    命中率=返回正确结果数/请求缓存次数,命中率问题是缓存中的一个非常重要的问题,它是衡量缓存有效性的重要指标。命中率越高,表明缓存的使用率越高。

  • 最大空间

    缓存中可以存放的最大元素的数量,一旦缓存中元素数量超过这个值(或者缓存数据所占空间超过其最大支持空间),那么将会触发缓存启动清空策略根据不同的场景合理的设置最大元素值往往可以一定程度上提高缓存的命中率,从而更有效的时候缓存。

  • 清空策略

    缓存相较于MySQL等关系型数据库的一大优点就是快速,但是缓存的存储空间往往更加有限,当缓存空间被用满时,应当使用怎样的缓存清空策略也是一个需要考虑的问题。

    常见的清空策略有:

    • FIFO(first in first out)

      先进先出策略,最先进入缓存的数据在缓存空间不够的情况下(超出最大元素限制)会被优先被清除掉,以腾出新的空间接受新的数据。策略算法主要比较缓存元素的创建时间。在数据实效性要求场景下可选择该类策略,优先保障最新数据可用。

    • LFU(less frequently used)

      最少使用策略,无论是否过期,根据元素的被使用次数判断,清除使用次数较少的元素释放空间。策略算法主要比较元素的hitCount(命中次数)。在保证高频数据有效性场景下,可选择这类策略。

    • LRU(least recently used)

      最近最少使用策略,无论是否过期,根据元素最后一次被使用的时间戳,清除最远使用时间戳的元素释放空间。策略算法主要比较元素最近一次被get使用时间。在热点数据场景下较适用,优先保证热点数据的有效性。

存在问题

  • 缓存与数据库双写不一致

    当我们对数据库中的字段进行修改时,应该以怎样的顺序处理缓存和数据库的关系?对缓存中的过期数据应当删除还是直接修改好?两者数据一致性问题如何解决如何权衡?

  • 缓存雪崩、缓存穿透、缓存击穿

    当缓存内部出现大规模的缓存失效或者热点数据失效,大量的请求仍然可能直接落在MySQL服务器上导致服务器瘫痪,这也是一个需要考虑的问题。

  • 缓存并发竞争

    我们的缓存系统可能不仅仅是单机形式的缓存,可能是分布式缓存,那么应该如何处理各个分布式节点之间的缓存数据一致性问题也是需要考虑的。

使用Redis作为缓存

Redis是一个使用ANSI C编写的开源、支持网络、基于内存、分布式、可选持久性的NoSQL键值对存储数据库。

Redis的基于纯内存操作,数据读写在内存中,异步持久化到磁盘中,同时采用了非阻塞的I/O多路复用机制,单线程避免了上下文切换等开销,性能相当优秀。

Redis与Memcached区别和共同点

共同点

  1. 都是基于内存的数据库,一般都用来当做缓存使用。
  2. 都有过期策略。
  3. 两者的性能都非常高。

区别

  1. Redis 支持更丰富的数据类型(支持更复杂的应用场景)。Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储。Memcached 只支持最简单的 k/v 数据类型。
  2. Redis 支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而 Memecache 把数据全部存在内存之中。
  3. Redis 有灾难恢复机制。 因为可以把缓存中的数据持久化到磁盘上。
  4. Redis 在服务器内存使用完之后,可以将不用的数据放到磁盘上。但是,Memcached 在服务器内存使用完之后,就会直接报异常。
  5. Memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 目前是原生支持 cluster 模式的.
  6. Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型。 (Redis 6.0 引入了多线程 IO )
  7. Redis 支持发布订阅模型、Lua 脚本、事务等功能,而 Memcached 不支持。并且,Redis 支持更多的编程语言。
  8. Memcached过期数据的删除策略只用了惰性删除,而 Redis 同时使用了惰性删除与定期删除。

Redis过期删除策略

Redis过期时间

一般情况下,我们设置保存的缓存数据的时候都会设置一个过期时间。为什么呢?

因为内存是有限的,如果缓存中的所有数据都是一直保存的话,分分钟直接Out of memory。

Redis 自带了给缓存数据设置过期时间的功能,比如:

1
2
3
4
5
6
127.0.0.1:6379> exp key  60 # 数据在 60s 后过期
(integer) 1
127.0.0.1:6379> setex key 60 value # 数据在 60s 后过期 (setex:[set] + [ex]pire)
OK
127.0.0.1:6379> ttl key # 查看数据还有多久过期
(integer) 56

注意:Redis中除了字符串类型有自己独有设置过期时间的命令 setex 外,其他方法都需要依靠 expire 命令来设置过期时间 。另外, persist 命令可以移除一个键的过期时间:

很多时候,我们的业务场景就是需要某个数据只在某一时间段内存在,比如我们的短信验证码可能只在1分钟内有效,用户登录的 token 可能只在 1 天内有效。

如果使用传统的数据库来处理的话,一般都是自己判断过期,这样更麻烦并且性能要差很多。

存储结构

Redis 通过一个叫做过期字典(可以看作是hash表)来保存数据过期的时间。过期字典的键指向Redis数据库中的某个key(键),过期字典的值是一个long long类型的整数,这个整数保存了key所指向的数据库键的过期时间(毫秒精度的UNIX时间戳)。

过期字典是存储在redisDb这个结构里的:

1
2
3
4
5
6
7
typedef struct redisDb {
...

dict *dict; //数据库键空间,保存着数据库中所有键值对
dict *expires // 过期字典,保存着键的过期时间
...
} redisDb;

删除策略

如果假设你设置了一批 key 只能存活 1 分钟,那么 1 分钟后,Redis 是怎么对这批 key 进行删除的呢?

常用的过期数据的删除策略:

  1. 惰性删除 :只会在取出key的时候才对数据进行过期检查。这样对CPU最友好,但是可能会造成太多过期 key 没有被删除。
  2. 定期删除 : 每隔一段时间抽取一批 key 执行删除过期key操作。并且,Redis 底层会通过限制删除操作执行的时长和频率来减少删除操作对CPU时间的影响。

定期删除对内存更加友好,惰性删除对CPU更加友好。两者各有千秋,所以Redis 采用的是 定期删除+惰性/懒汉式删除

内存淘汰机制

仅仅通过给 key 设置过期时间还是有问题的。因为还是可能存在定期删除和惰性删除漏掉了很多过期 key 的情况。这样就导致大量过期 key 堆积在内存里,然后就Out of memory了。

Redis 提供 6 种数据淘汰策略:

  1. volatile-lru(least recently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  2. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  4. allkeys-lru(least recently used):当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)
  5. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  6. no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!

4.0 版本后增加以下两种:

  1. volatile-lfu(least frequently used):从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰
  2. allkeys-lfu(least frequently used):当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的 key

缓存穿透

缓存穿透说简单点就是大量请求的 key 根本不存在于缓存中,导致请求直接到了数据库上,根本没有经过缓存这一层。举个例子:某个黑客故意制造我们缓存中不存在的 key 发起大量请求,导致大量请求落到数据库。

解决方法:

最基本的就是首先做好参数校验,一些不合法的参数请求直接抛出异常信息返回给客户端。比如查询的数据库 id 不能小于 0、传入的邮箱格式不对的时候直接返回错误消息给客户端等等。

  • 缓存无效 key

如果缓存和数据库都查不到某个 key 的数据就写一个到 Redis 中去并设置过期时间,具体命令如下: SET key value EX 10086 。这种方式可以解决请求的 key 变化不频繁的情况,如果黑客恶意攻击,每次构建不同的请求 key,会导致 Redis 中缓存大量无效的 key 。很明显,这种方案并不能从根本上解决此问题。如果非要用这种方式来解决穿透问题的话,尽量将无效的 key 的过期时间设置短一点比如 1 分钟。

另外,这里多说一嘴,一般情况下我们是这样设计 key 的: 表名:列名:主键名:主键值

如果用 Java 代码展示的话,差不多是下面这样的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public Object getObjectInclNullById(Integer id) {
// 从缓存中获取数据
Object cacheValue = cache.get(id);
// 缓存为空
if (cacheValue == null) {
// 从数据库中获取
Object storageValue = storage.get(key);
// 缓存空对象
cache.set(key, storageValue);
// 如果存储数据为空,需要设置一个过期时间(300秒)
if (storageValue == null) {
// 必须设置过期时间,否则有被攻击的风险
cache.expire(key, 60 * 5);
}
return storageValue;
}
return cacheValue;
}
  • 布隆过滤器

布隆过滤器是一个非常神奇的数据结构,通过它我们可以非常方便地判断一个给定数据是否存在于海量数据中。我们需要的就是判断 key 是否合法,有没有感觉布隆过滤器就是我们想要找的那个“人”。

具体是这样做的:把所有可能存在的请求的值都存放在布隆过滤器中,当用户请求过来,先判断用户发来的请求的值是否存在于布隆过滤器中。不存在的话,直接返回请求参数错误信息给客户端,存在的话才会走下面的流程。

加入布隆过滤器之后的缓存处理流程图如下。

但是,需要注意的是布隆过滤器可能会存在误判的情况。总结来说就是: 布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。

为什么会出现误判的情况呢? 我们还要从布隆过滤器的原理来说!

我们先来看一下,当一个元素加入布隆过滤器中的时候,会进行哪些操作:

  1. 使用布隆过滤器中的哈希函数对元素值进行计算,得到哈希值(有几个哈希函数得到几个哈希值)。
  2. 根据得到的哈希值,在位数组中把对应下标的值置为 1。

我们再来看一下,当我们需要判断一个元素是否存在于布隆过滤器的时候,会进行哪些操作:

  1. 对给定元素再次进行相同的哈希计算;
  2. 得到值之后判断位数组中的每个元素是否都为 1,如果值都为 1,那么说明这个值在布隆过滤器中,如果存在一个值不为 1,说明该元素不在布隆过滤器中。

然后,一定会出现这样一种情况:不同的字符串可能哈希出来的位置相同。 (可以适当增加位数组大小或者调整我们的哈希函数来降低概率)

缓存击穿

对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。

缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。

解决方案:

  • 使用互斥锁(mutex key)

比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。
SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public String get(key) {
String value = redis.get(key);
if (value == null) { //代表缓存值过期
//设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(key_mutex);
} else { //这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
sleep(50);
get(key); //重试
}
} else {
return value;
}
}
  • 永远不过期

这里的“永远不过期”包含两层意思:

(1) 从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。

(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期

缓存雪崩

缓存在同一时间大面积的失效,后面的请求都直接落到了数据库上,造成数据库短时间内承受大量请求。

举个例子:系统的缓存模块出了问题比如宕机导致不可用。造成系统的所有访问,都要走数据库。

还有一种缓存雪崩的场景是:有一些被大量访问数据(热点缓存)在某一时刻大面积失效,导致对应的请求直接落到了数据库上。 这样的情况,有下面几种解决办法:

举个例子 :秒杀开始 12 个小时之前,我们统一存放了一批商品到 Redis 中,设置的缓存过期时间也是 12 个小时,那么秒杀开始的时候,这些秒杀的商品的访问直接就失效了。导致的情况就是,相应的请求直接就落到了数据库上,就像雪崩一样可怕。

解决办法:

  • 针对 Redis 服务不可用的情况:
  1. 采用 Redis 集群,避免单机出现问题整个缓存服务都没办法使用。
  2. 限流,避免同时处理大量的请求。
  • 针对热点缓存失效的情况:
  1. 设置不同的失效时间比如随机设置缓存的失效时间。
  2. 缓存永不失效。

简单Java示例(牛客论坛为例)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import com.nowcoder.community.dao.UserMapper;
import com.nowcoder.community.entity.LoginTicket;
import com.nowcoder.community.entity.User;
import com.nowcoder.community.util.CommunityConstant;
import com.nowcoder.community.util.CommunityUtil;
import com.nowcoder.community.util.MailClient;
import com.nowcoder.community.util.RedisKeyUtil;
import org.apache.commons.lang3.StringUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.stereotype.Service;
import org.thymeleaf.TemplateEngine;
import org.thymeleaf.context.Context;

import java.util.*;
import java.util.concurrent.TimeUnit;

@Service
public class UserService implements CommunityConstant {

@Autowired
private UserMapper userMapper;

@Autowired
private MailClient mailClient;

@Autowired
private TemplateEngine templateEngine;

@Value("${community.path.domain}")
private String domain;

@Value("${server.servlet.context-path}")
private String contextPath;

@Autowired
private RedisTemplate redisTemplate;

public User findUserById(int id) {
User user = getCache(id); //尝试从缓存中获取User信息
if (user == null) {
user = initCache(id); //如果不能获取到,则从数据库中进行初始化
}
return user;
}

//.......

// 1.优先从缓存中取值
private User getCache(int userId) {
String redisKey = RedisKeyUtil.getUserKey(userId);
return (User) redisTemplate.opsForValue().get(redisKey);
}

// 2.取不到时初始化缓存数据
private User initCache(int userId) {
User user = userMapper.selectById(userId);
String redisKey = RedisKeyUtil.getUserKey(userId);
redisTemplate.opsForValue().set(redisKey, user, 3600, TimeUnit.SECONDS);
return user;
}

// 3.数据变更时清除缓存数据
private void clearCache(int userId) {
String redisKey = RedisKeyUtil.getUserKey(userId);
redisTemplate.delete(redisKey);
}

//.......

}

使用Caffeine作为缓存

介绍

Redis 作为常用中间件,虽然我们一般业务系统(毕竟业务量有限)不会遇到如下图 在随着 data-size 的增大和数据结构的复杂的造成性能下降,但网络 IO 消耗会成为整个调用链路中不可忽视的部分。尤其在微服务架构中,一次调用往往会涉及多次调用。

相比Redis等数据库,Caffeine 来自未来的本地内存缓存,性能比常见的内存缓存实现性能高出不少

功能

Caffeine提供了多种灵活的构造方法,从而可以创建多种特性的本地缓存。

  1. 自动把数据加载到本地缓存中,并且可以配置异步;
  2. 基于数量剔除策略;
  3. 基于失效时间剔除策略,这个时间是从最后一次操作算起【访问或者写入】;
  4. 异步刷新;
  5. Key会被包装成Weak引用;
  6. Value会被包装成Weak或者Soft引用,从而能被GC掉,而不至于内存泄漏;
  7. 数据剔除提醒;
  8. 写入广播机制;
  9. 缓存访问可以统计;

主要组件

  • Cache的内部包含着一个ConcurrentHashMap,这也是存放我们所有缓存数据的地方,众所周知,ConcurrentHashMap是一个并发安全的容器,这点很重要,可以说Caffeine其实就是一个被强化过的ConcurrentHashMap。
  • Scheduler,定期清空数据的一个机制,可以不设置,如果不设置则不会主动的清空过期数据。
  • Executor,指定运行异步任务时要使用的线程池。可以不设置,如果不设置则会使用默认的线程池,也就是ForkJoinPool.commonPool()

配置说明

加载机制

手动加载Cache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class CaffeineManualTest {

@Test
public void test() {
// 初始化缓存,设置了1分钟的写过期,100的缓存最大个数
Cache<Integer, Integer> cache = Caffeine.newBuilder()
.expireAfterWrite(1, TimeUnit.MINUTES)
.maximumSize(100)
.build();
int key1 = 1;
// 使用getIfPresent方法从缓存中获取值。如果缓存中不存指定的值,则方法将返回 null:
System.out.println(cache.getIfPresent(key1));

// 也可以使用 get 方法获取值,该方法将一个参数为 key 的 Function 作为参数传入。如果缓存中不存在该 key
// 则该函数将用于提供默认值,该值在计算后插入缓存中:
System.out.println(cache.get(key1, new Function<Integer, Integer>() {
@Override
public Integer apply(Integer integer) {
return 2;
}
}));

// 校验key1对应的value是否插入缓存中
System.out.println(cache.getIfPresent(key1));

// 手动put数据填充缓存中
int value1 = 2;
cache.put(key1, value1);

// 使用getIfPresent方法从缓存中获取值。如果缓存中不存指定的值,则方法将返回 null:
System.out.println(cache.getIfPresent(1));

// 移除数据,让数据失效
cache.invalidate(1);
System.out.println(cache.getIfPresent(1));
}
}

上面提到了两个get数据的方式,一个是getIfPercent,没数据会返回Null,而get数据的话则需要提供一个Function对象,当缓存中不存在查询的key则将该函数用于提供默认值,并且会插入缓存中。

同步加载LoadingCache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class CaffeineLoadingTest {

/**
* 模拟从数据库中读取key
*
* @param key
* @return
*/
private int getInDB(int key) {
return key + 1;
}

@Test
public void test() {
// 初始化缓存,设置了1分钟的写过期,100的缓存最大个数
LoadingCache<Integer, Integer> cache = Caffeine.newBuilder()
.expireAfterWrite(1, TimeUnit.MINUTES)
.maximumSize(100)
.build(new CacheLoader<Integer, Integer>() {
@Nullable
@Override
public Integer load(@NonNull Integer key) {
return getInDB(key);
}
});

int key1 = 1;
// get数据,取不到则从数据库中读取相关数据,该值也会插入缓存中:
Integer value1 = cache.get(key1);
System.out.println(value1);

// 支持直接get一组值,支持批量查找
Map<Integer, Integer> dataMap
= cache.getAll(Arrays.asList(1, 2, 3));
System.out.println(dataMap);
}
}

所谓的同步加载数据指的是,在get不到数据时最终会调用build构造时提供的CacheLoader对象中的load函数,如果返回值则将其插入缓存中,并且返回,这是一种同步的操作,也支持批量查找。

异步加载AsyncCache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
public class CaffeineAsynchronousTest {

/**
* 模拟从数据库中读取key
*
* @param key
* @return
*/
private int getInDB(int key) {
return key + 1;
}

@Test
public void test() throws ExecutionException, InterruptedException {
// 使用executor设置线程池
AsyncCache<Integer, Integer> asyncCache = Caffeine.newBuilder()
.expireAfterWrite(1, TimeUnit.MINUTES)
.maximumSize(100).executor(Executors.newSingleThreadExecutor()).buildAsync();
Integer key = 1;
// get返回的是CompletableFuture
CompletableFuture<Integer> future = asyncCache.get(key, new Function<Integer, Integer>() {
@Override
public Integer apply(Integer key) {
// 执行所在的线程不在是main,而是ForkJoinPool线程池提供的线程
System.out.println("当前所在线程:" + Thread.currentThread().getName());
int value = getInDB(key);
return value;
}
});

int value = future.get();
System.out.println("当前所在线程:" + Thread.currentThread().getName());
System.out.println(value);
}
}

getInDB是在线程池ForkJoinPool提供的线程中执行的,而且asyncCache.get()返回的是一个CompletableFuture

缓存一致性问题

一致性分类

一致性就是数据保持一致,在分布式系统中,可以理解为多个节点中数据的值是一致的。

  • 强一致性:这种一致性级别是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大
  • 弱一致性:这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态
  • 最终一致性:最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型

操作缓存删除还是更新?

我们在操作缓存的时候,到底应该删除缓存还是更新缓存呢?

我们先来看个例子:

  1. 线程A先发起一个写操作,第一步先更新数据库
  2. 线程B再发起一个写操作,第二步更新了数据库
  3. 由于网络等原因,线程B先更新了缓存
  4. 线程A更新缓存。

这时候,缓存保存的是A的数据(老数据),数据库保存的是B的数据(新数据),数据不一致了,脏数据出现啦。如果是删除缓存取代更新缓存则不会出现这个脏数据问题。

更新缓存相对于删除缓存,还有两点劣势:

  • 如果你写入的缓存值,是经过复杂计算才得到的话。更新缓存频率高的话,就浪费性能啦。
  • 在写数据库场景多,读数据场景少的情况下,数据很多时候还没被读取到,又被更新了,这也浪费了性能呢(实际上,写多的场景,用缓存也不是很划算了)

双写情况下优先操作数据库还是缓存?

假设有A、B两个请求,请求A做更新操作,请求B做查询读取操作。

  1. 线程A发起一个写操作,第一步del cache
  2. 此时线程B发起一个读操作,cache miss
  3. 线程B继续读DB,读出来一个老数据
  4. 然后线程B把老数据设置入cache
  5. 线程A写入DB最新的数据

缓存和数据库的数据不一致了。缓存保存的是老数据,数据库保存的是新数据。因此,Cache-Aside缓存模式,选择了先操作数据库而不是先操作缓存。

延时双删

  1. 先删除缓存
  2. 再更新数据库
  3. 休眠一会(比如1秒),再次删除缓存。

休眠时间 = 读业务逻辑数据的耗时 + 几百毫秒。 为了确保读请求结束,写请求可以删除读请求可能带来的缓存脏数据。

存在问题

延时双删,演变成了:先更新数据库,再删除缓存

比如:

1、A删除缓存

2、B查询数据库获取旧值

3、B更新了缓存

4、A更新数据库

5、A延时删缓存

1~3步执行后,数据库和缓存是一致的,相当于没删除。

4~5步:先更新数据库,再删缓存。

所以延时双删演变成了:先更新数据库,再删除缓存。问题还是没解决。。。

为什么?假设,此时,在第4步执行之前,又来了个查询C,C查询到旧值。第6步:C将旧值插入缓存。此时出现缓存和数据库不一致。

延时并不能解决:C插入缓存的操作在第5步后面执行,比如C遇到网络问题、GC问题等。当然这是小概率,但并不代表不存在。

当然,延时越长,这个问题越能规避。如果业务需求不是非常严格,是可以忽略的。